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Solutions to Problems 4 Fréchet derivatives

Fréchet differentiable scalar-valued functions.

1. a. Prove, by verifying the definition, that the scalar-valued functions

i. f : R2 → R,x 7−→ x(x+y) and

ii. g : R2 → R,x 7−→ y(x−y)

are Fréchet differentiable at a general point a = (α, β)T and find the Fréchet
derivatives dfa and dga.

b. Use your results to check your answers to Question 1 on Sheet 3.

Solution a. i. With t = (s, t)T we have

a + t =

(
α + s
β + t

)
,

and so

f(a + t)− f(a) = (α + s) (α + s+ β + t)− α(α + β)

= αs+ αt+ sα + s2 + sβ + st

= (2α + β) s+ αt+ s2 + st.

We might guess that the required linear function of s and t is L(t) =
(2α + β) s+ αt (we have simply omitted any higher powers or products of s
and t). To verify the definition first consider

f(a + t)− f(a)− L (t) = s2 + st.

Recall that |s| , |t| ≤ |t| so, by the triangle inequality,∣∣s2 + st
∣∣ ≤ |s|2 + |s| |t| ≤ 2 |t|2 .

Then ∣∣∣∣f(a + t)− f(a)− L(t)

|t|

∣∣∣∣ =

∣∣∣∣s2 + st

|t|

∣∣∣∣ ≤ 2 |t|2

|t|
= 2 |t| → 0

as t→ 0. Hence, by the Sandwich Rule,

lim
t→0

f(a + t)− f(a)− L(t)

|t|
= 0. (1)
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Thus f is Fréchet differentiable at a with

dfa(t) = (2α + β) s+ αt.

Yet a is arbitrary so f is Fréchet differentiable on R2.

For the second function,

g(a + t)− g(a) = (β + t) (α− β + s− t)− β (α− β)

= βs− 2βt+ αt+ st− t2

We guess the linear form is L(t) = βs + (α− 2β) t. There are no new
ideas involved in showing that the corresponding (1) holds. Thus g is Fréchet
differentiable at a with

dga(t) = βs+ (α− 2β) t.

Again a is arbitrary so g is Fréchet differentiable on R2.

b. Since the functions are Fréchet differentiable we have

dvf(a) = dfa(v) = (2α + β)u+ αv

dvg(a) = dga(v) = βu+ (α− 2β) v.

if v = (u, v)T . With a = (1, 2)T and v = (2,−1)T /
√

5 we find

dvf(a) = 4× 2√
5
− 1√

5
=

7√
5
,

dvg(a) = 2× 2√
5
− 3×

(
− 1√

5

)
=

7√
5
.

Hopefully these agree with your answers to Question 1 on Sheet 3.

2. i. Define the function h : R3 → R by h(x) = xy + yz + xz where x =
(x, y, z)T . Prove by verifying the definition that f is Fréchet differentiable at
a general point a = (α, β, γ)T ∈ R3 and find the Fréchet derivative dha of h
at a.

ii. Use your result to check your answer to Question 3 on Sheet 3.
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Solution With a = (α, β, γ)T ∈ R3 given and t = (s, t, u)T consider

h(a + t)− h(a) = (α + s) (β + t) + (β + t) (γ + u) + (α + s) (γ + u)

−αβ − βγ − αγ

= αt+ sβ + st+ βu+ tγ + tu+ αu+ sγ + su

= (β + γ) s+ (α + γ) t+ (α + β)u+ st+ tu+ su

We might guess that the required linear function of s, t and u is

L(t) = (β + γ) s+ (α + γ) t+ (α + β)u.

To check the definition first consider

h(a + t)− h(a)− L(t) = st+ tu+ su.

Recall that |s| , |t| , |u| ≤ |t| so, by the triangle inequality,

|st+ tu+ su| ≤ |s| |t|+ |t| |u|+ |s| |u| ≤ 3 |t|2 .

Thus∣∣∣∣h(a + t)− h(a)− L (t)

|t|

∣∣∣∣ =

∣∣∣∣st+ tu+ su

|t|

∣∣∣∣ ≤ 3 |t|2

|t|
= 3 |t| → 0

as t→ 0. Hence, by the sandwich rule,

lim
t→0

h(a + t)− h(a)− L(t)

|t|
= 0.

Thus h is Fréchet differentiable at a with

dha (t) = (β + γ) s+ (α + γ) t+ (α + β)u. (2)

Yet a is arbitrary so h is Fréchet differentiable on R2.

The lesson to be learnt is that there must be an easier way of verifying a
function is Fréchet differentiable then finding the derivative.

ii. Question 3 on Sheet 3 asked for the directional derivative of h(x) = xy +
yz+xz at a = (1, 2, 3)T in the direction of the unit vector v = (3, 2, 1)T /

√
14.

Now we know that h is Fréchet differentiable we know that

dvh(a) = dha(v) =
(2 + 3)× 3 + (1 + 3)× 2 + (1 + 2)× 1√

14
by (2)

=
26√
14
.
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Hopefully the same result as found previously.

Fréchet differentiable vector-valued functions.

3. Let f : R2 → R2 be given by

f(x) =

(
x2 − y2

2xy

)
,

for x = (x, y)T ∈ R2. Prove, by verifying the definition that f is everywhere
Fréchet differentiable and find the Fréchet derivative of f at a general point
a = (α, β)T .

Solution With t = (s, t)T consider

f(a + t)− f(a) =

(
(α + s)2 − (β + t)2

2 (α + s) (β + t)

)
−

(
α2 − β2

2αβ

)

=

(
2αs+ s2 − 2βt− t2

2αt+ 2βs+ 2st

)
.

Guess that the linear part in s and t is

L(t) =

(
2αs− 2βt

2αt+ 2βs

)
.

Consider
f(x + t)− f(x)− L(t)

|t|
=

1

|t|

(
s2 − t2

2st

)
.

Recall that in general, limx→0 f (x) = b if, and only if limx→0 f
i (x) = bi

for all components. So it suffices to prove

lim
t→0

s2 − t2

|t|
= 0 and lim

t→0

2st

|t|
= 0. (3)

Yet both will follow from the Sandwich Rule with the observation that
|s| , |t| ≤ |t|. So, start with the triangle inequality,∣∣s2 − t2∣∣ ≤ |s|2 + |t|2 = |t|2 along with |2st| ≤ 2 |t|2 .
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Then
|s2 − t2|
|t|

≤ |s
2|+ |t2|
|t|

= |t| → 0 and
|2st|
|t|
≤ 2 |t| → 0

as t→ 0. Hence the limits in (3) follow, f is Fréchet differentiable at a and
thus everywhere with

dfa (t) =

(
2αs− 2βt

2αt+ 2βs

)
.

4. i. Prove that the scalar-valued function x 7→ x2y is everywhere Fréchet
differentiable on R2. In lectures and Problems class this was done for the
scalar-valued function x 7→ xy2, simply copy that method for the second.

ii. Prove that the vector-valued function f : R2 → R2, given by

f(x) =

(
xy2

x2y

)
,

is Fréchet differentiable at a general point a = (α, β)T ∈ R2 and find the
Fréchet derivative dfa of f at a.

ii. Use the result from part i to check your answer to Question 7 on Sheet 3.

Note the difference in wording between this question and the previous one.

Solution Let a = (α, β)T , t = (s, t)T ∈ R2. Let f(x) = x2y. Then

f(a + t)− f(a) = f

((
α + s

β + t

))
− f

((
α

β

))
= (α + s)2 (β + t)− α2β

=
(
α2 + 2αs+ s2

)
(β + t)− α2β

= 2αβs+ α2t+ βs2 + 2αst+ s2t.

The ‘linear part in s and t’ of this is 2αβs+ α2t, so we guess

dfa (t) = 2αβs+ α2t.

To check, consider

f(a + t)− f(a)− (2αβs+ α2t)

|t|
=
βs2 + 2αst+ s2t

|t|
.
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Again, |s|, |t| ≤ |t| and |α|, |β| ≤ |a|, so by the triangle inequality∣∣βs2 + 2αst+ s2t
∣∣ ≤ |β| |s|2 + 2 |α| |s| |t|+ |s|2 |t|

≤ 3 |a| |t|2 + |t|3 .

Therefore ∣∣∣∣βs2 + 2αst+ s2t

|t|

∣∣∣∣ ≤ 3 |a| |t|+ |t|2 → 0

as t→ 0. Hence f is Fréchet differentiable on R2 with

dfa (t) = 2αβs+ α2t.

ii. By a proposition in the notes, f is Fréchet differentiable at a iff each
component function is Fréchet differentiable at a, and further (dfa)i = df i

a

for all i. In this example f 1(x) = xy2 and from the lectures we know that
df 1

a (t) = β2s+ 2αβt. Hence

dfa(t) =

(
df 1

a (t)

df 2
a (t)

)
=

(
β2s+ 2αβt

2αβs+ α2t

)
. (4)

iii. Question 7 on Sheet 3 asks for the directional derivative of f at a = (2, 1)T

in the direction of the unit vector v = (1,−1)T /
√

2. Now we know that f is
Fréchet differentiable we know that

dvf(a) = dfa(v) =
1√
2

(
12 × 1− 2× 2× 1× 1
2× 2× 1× 1− 22 × 1

)
by (4)

= − 3√
2

(
1
0

)
.

Jacobian Matrices and Gradient vectors

5. Write down the general Jacobian matrix in each of the following cases
and then evaluate them at the given point.

i. p(r, θ) = (r cos θ, r sin θ)T at the point (1, π)T ,

ii. g(u, v, w) = uv + 5u2w at the point (2,−3, 1)T ,
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iii. r(t) = (cos t, sin t, t)T , a helix in R3, at the point t = 3π.

Solution i.

Jp(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
and Jp(1, π) =

(
−1 0

0 −1

)
.

ii.

Jg(u, v, w) =
(
v + 10uw u 5u2

)
and Jg(2,−3, 1) =

(
17 2 20

)
.

iii.

Jr(t) =

 − sin t
cos t

1

 and Jr(3π) =

 0
−1

1

 .

6. By returning to Questions 1 and 2 find the gradient vectors of

i. f : R2 → R,x 7−→ x(x+y) and

ii. g : R2 → R,x 7−→ y(x−y)

iii. h : R3 → R by x 7−→ xy + yz + xz where x = (x, y, z)T ,

without using partial differentiation. Justify your argument.

Solution i. From Question 1 we have that f is everywhere Fréchet differ-
entiable which is necessary for us to say that, for all a = (α, β)T ∈ R2, we
have

∇f(a) • t = dfa(t)

= (2α + β) s+ αt by Question 1

= (2α + β, α)T • t.

True for all t ∈ R2 means∇f(a) = (2α + β, α)T , i.e. ∇f(x) = (2x+ y, x)T

for x = (x, y)T .

ii. From Question 1 we have that g is everywhere Fréchet differentiable which
is necessary for us to say that, for all a = (α, β)T ∈ R2, we have

∇g(a) • t = dga(t)

= βs+ (α− 2β) t by Question 1

= (β, α− 2β)T • t.
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True for all t ∈ R2 means∇g(a) = (β, α− 2β)T , i.e. ∇g(x) = (y, x− 2y)T

for x = (x, y)T .

iii. From Question 2 we have that h is everywhere Fréchet differentiable
which is necessary for us to say that, for all a = (α, β, γ)T ∈ R3, we have

∇h(a) • t = dha(t)

= (β + γ) s+ (α + γ) t+ (α + β)u by Question 2

= (β + γ, α + γ, α + β)T • t.

True for all t ∈ R3 means ∇h(a) = (β + γ, α + γ, α + β)T , i.e. ∇h(x) =
(y + z, x+ z, x+ y)T for x = (x, y, z)T .

7. By returning to Question 3 and 4 find the Jacobian matrices of f ,g :
R2 → R2, given by

f(x) =

(
x2 − y2

2xy

)
, and g(x) =

(
xy2

x2y

)

without using partial differentiation. Justify your argument.

Solution From Question 3 we have that f is everywhere Fréchet differentiable
which is the required justification for us to say that, for all a = (α, β)T ∈ R2,
we have

Jf(a) t = dfa(t) =

(
2αs− 2βt

2αt+ 2βs

)
by Question 3

=

(
2α −2β
2β 2α

)(
s
t

)
=

(
2α −2β
2β 2α

)
t.

True for all t ∈ R2 means

Jf(a) =

(
2α −2β
2β 2α

)
, i.e. Jf(x) =

(
2x −2y
2y 2x

)
for x = (x, y)T .

From Question 4 we have that g is everywhere Fréchet differentiable and
so, for all a = (α, β)T ∈ R2, we have

Jg(a) t = dga(t) =

(
β2s+ 2αβt
2αβs+ α2t

)
=

(
β2 2αβ

2αβ α2

)
t.
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True for all t ∈ R2 means

Jg(a) =

(
β2 2αβ

2αβ α2

)
, i.e. Jg(x) =

(
2y2 2xy
2xy 2x2

)
for x = (x, y)T .

Not Fréchet differentiable

8. Recall the important result for scalar-valued functions

f Fréchet differentiable at a =⇒ ∀ unit v, dvf(a) exists and dvf(a) = ∇f(a) • v.

The contrapositive of this is the useful

∃ unit v : either dvf(a) does not exist or dvf(a) 6= ∇f(a) • v
=⇒ f is not Fréchet differentiable at a

(5)

Define the function f : R2 → R by

f(x) =
x2y

x2 + y2
if x 6= 0, f(0) = 0.

Prove that f is not Fréchet differentiable at 0.

This function was seen in Question 11iii Sheet 1 where it was shown that
limx→0 f(x) = 0. Since f(0) = 0 this means f is continuous at 0. So we
have an example illustrating the important

f continuous at a 6=⇒ f is Fréchet differentiable at a.

But f was also seen in Question 14 on Sheet 3 where it was shown that
the directional derivatives dvf(0) exist for all unit v. So we have an example
of

∀ unit v, dvf(a) exists 6=⇒ f is Fréchet differentiable at a.

Solution By (5) it suffices to find a v : dvf(0) 6= ∇f(0) • v.

From Question 14ii on Sheet 3 we have

∂f

∂x
(0) =

∂f

∂y
(0) = 0
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and so ∇f(0) = 0 and thus ∇f(0) • v = 0 for all v.

Yet from Question 14iii on Sheet 3 we have dvf(0) = f(v) so we need
only choose a v : f(v) 6= 0. For example, v = (1, 1)T/

√
2.

In Question 8 we used that fact that there exists a unit v for which
dvf(0) 6= ∇f(0) • v to deduce that f is not Fréchet differentiable at 0. In
the following question we find an example of a function f for which dvf(0) =
∇f(0) • v for all unit v and yet f is still not Fréchet differentiable at 0.

9. (Tricky) Define the function f : R2 → R by

f(x) =
xy2
√
x2 + y2

x2 + y4
if x 6= 0; f(0) = 0.

i. Prove that f is continuous at 0.

Hint Note that x ≤
√
x2 + y4, and similarly for y2.

ii. Prove from first principles that the directional derivative exists in all
directions, and further, satisfies dvf(0) = ∇f(0) •v for all unit vectors
v ∈ R2.

iii. Prove that, nevertheless, f is not Fréchet differentiable at 0.

This example illustrates two important points

continuous 6=⇒ Fréchet differentiable.

and

∀ unit v, dvf (a) exists and dvf(a) = ∇f(a) • v 6=⇒ differentiable.

Solution i. To show f is continuous at 0 we start by bounding |f(x)− f(0)| =
|f(x)| from above. By the hint given

|x| ≤
√
x2 + y4 and

∣∣y2∣∣ ≤√x2 + y4.

(This is probably the hardest step.) Thus

|f(x)| ≤
√
x2 + y2 = |x| → 0

10



as x → 0. Hence, by the Sandwich Rule, limx→0 f(x) = 0 = f(0), therefore
f is continuous at 0.

Alternative proof Use the so-called AM-GM inequality; that the arith-
metic mean is greater than the geometric mean. So if a, b > 0 then

√
ab ≤

(a+ b) /2 (follows from
(√

a−
√
b
)2
≥ 0). Apply this with a = x2 and b = y4

to get |x| y2 < (x2 + y4) /2. This gives the stronger result |f(x)| < |x| /2.

ii. To find the directional derivatives at 0 assume that the unit vector v is
given. Let v = (h, k)T , so

√
h2 + k2 = 1. Then we have two cases.

The first case is h 6= 0, when

f(0 + tv) =
th (tk)2

(th)2 + (tk)4

√
(th)2 + (tk)2 =

t2hk2

h2 + t2k4
.

Thus
f(0 + tv)− f(0)

t
= t

hk2

h2 + t2k4
→ 0 (6)

as t→ 0.

In the second case h = 0 when f(0 + tv) = 0 for all t and we get the same
limit in (6).

Therefore in all cases the limit in (6) exists, so f has directional derivatives
at 0 with dvf (0) = 0 for all unit vectors v.

Note for the next part that (6) means, in particular, that d1f(0) = de1f(0) =
0 and d2f(0) = de2f(0) = 0. Thus the gradient vector at 0 is

∇f(0) =

(
d1f(0)

d2f(0)

)
=

(
0
0

)
= 0.

iii. To prove that f is not Fréchet differentiable at 0 we assume, for a
contradiction, that f is Fréchet differentiable at 0. This means that the linear
function df0 exists. But further, by a result in the notes df0 (v) = ∇f(0) • v
for all vectors v. Yet we have ∇f(0) = 0 which thus means that df0 (v) = 0
for all v ∈ R2. Hence df0 = 0 : R2 → R (i.e. it is the map that takes all
vectors of R2 to 0.)

Now look at the definition of df0 as the linear map which satisfies

0 = lim
t→0

f(0 + t)− f(0)− df0(t)

|t|
= lim

t→0

f(t)

|t|
(7)
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since f(0) = 0 and df0(t) = 0. The definition of f may have looked compli-
cated but it could have been written as

f(x) =
xy2 |x|
x2 + y4

, i.e.
f(x)

|x|
=

xy2

x2 + y4
.

Then (7) is saying that

0 = lim
t→0

st2

s2 + t4
, (8)

where t = (s, t)T . Yet Question 11iv, Sheet 1, showed this is false. As a
recap of that earlier question, if (8) were true we would get the same value,
0, along whatever path we approached the origin. If we choose the path(

s

t

)
=

(
`2

`

)
then

0 = lim
t→0

st2

s2 + t4
= lim

`→0

`4

`4 + `4
=

1

2
.

Contradiction.

Aside You can see how this example was constructed. I took a bounded
function not continuous at 0, called g(x) say. I then defined f(x) = g(x) |x|.
Note that f(0) = 0 and f(0 + tv) = g(tv) |t| so (f(0 + tv)− f(0)) /t =
g(tv) |t| /t. Thus I also demand that limt→0 g(tv) = 0 for all v. So I had to
look through our collection of functions that had the same directional limit
at 0 in all directions but with different limits along two different paths to 0.
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Solutions to Additional Questions 4

10. Product Rule for Gradient vectors Assume for f, g : U → R, U ⊆ Rn that
the gradient vectors ∇f(a) and ∇g(a) exist at a ∈ U . Prove that ∇(fg) (a)
exists and satisfies

∇(fg) (a) = f(a)∇g(a) + g(a)∇f(a) .

Solution ∇f(a) and ∇g(a) exist iff dif(a) and dig(a) exist for all 1 ≤ i ≤ n,
iff deif(a) and deig(a) exist for all 1 ≤ i ≤ n. This is sufficient, by Question
16 on Sheet 3, to deduce that dei (fg) (a) exists and

di (fg) (a) = f(a) dig(a) + g(a) dif(a) ,

for all 1 ≤ i ≤ n. Yet this is simply the equality of coordinates in∇(fg) (a) =
f(a)∇g(a) + g(a)∇f(a) .

11. Prove that

f(x) =
xy√
x2 + y2

, x = (x, y)T 6= 0, f(0) = 0,

is continuous but not Fréchet differentiable at 0.

Solution Start by noting that

f(x) =
xy

|x|
so |f(x)| = |x| |y|

|x|
≤ |x| |x|
|x|

= |x| → 0

as x→ 0. Thus, by the Sandwich Rule, limx→0 f(x) = 0 = f(0) and so f is
continuous at 0.

Assume for contradiction that f is Fréchet differentiable at 0. Then df0
exists and satisfies df0(v) = dvf(0) for all unit v. It is not hard to check
from the definition that dvf(0) = 0 for all unit v. Thus df0 = 0. Within the
definition of Fréchet differentiable this gives

0 = lim
t→0

f(t)− f(0)− df0(t)

|t|
= lim

t→0

f(t)

|t|
= lim

t→0

st

s2 + t2
,

where t = (s, t)T . This is the required contradiction since the limit on the
right does not exist (Question 11ii, Sheet 1.)
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